Chem 106 Exam 2. January 17, 2003. Name_____

Useful information: $\Delta H = \Delta w + q$, $\Delta G = \Delta H - T\Delta S$, $\Delta H_{rxn} = \sum \Delta H_{products} - \sum \Delta H_{reagents}$, q=s x m x ΔT , q = C x ΔT , s = 4.18 J/g•°C for water, $\Delta G = \sum \Delta G_{products} - \sum \Delta G_{reagents}$

(1)(4 pts) Calculate the value of ΔH (in kJ·mol⁻¹) for the reaction

 $N_2(g) + 3H_2(g) -> 2NH_3(g)$

 $\begin{array}{ccc} & \text{Bond Energies } (kJ \cdot mol^{-1}) \\ \text{H-H} & & 435 \\ \text{N_N} & & 946 \ (\text{in } N_2 \ \text{triple bond}) \\ \text{N-H} & & 389 \end{array}$

- (A) 2340 kJ of heat absorbed
- (B) 213 kJ of heat absorbed
- (C)2340 kJ of heat evolved
- (D)83 kJ of heat evolved
- (2)(4 pts) In which process is entropy decreased?
 - (A) dissolving sugar in water
 - (B) expanding a gas
 - (C) evaporating a liquid
 - (D) freezing water

(3)(4 pts) Compound ${}^{\Delta G_{f}^{0}}$ (kJ·mol⁻¹) SO₂(g) -301 SO₃(g) -372 O_{2(g)} 0 What is ΔG^{0} for this reaction at 298 K?

 $2SO_2(g) + O_2(g) - 2SO_3(g)$

(A)–142 kJ (B) –200 kJ (C)–744 kJ (D) 142 kJ

(4)(4 pts) At 298 K, is this reaction endothermic or exothermic, and what is the value of ΔH ?

Compound	$\Delta H_{\rm f}^0$	ΔG_{f}^{0}
and State	(kJ·mol⁻¹)	(kJ·mol⁻¹)
$CO_2(g)$	-393	-393
CaO(s)	-636	-603
CaCO ₃ (s)	-1210	-1130

At 298 K, the reaction represented by

 $CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$ is

(A) exothermic with ΔH = +181 kJ

(B) endothermic with $\Delta H = -181 \text{ kJ}$

(C) endothermic with ΔH = +134 kJ

(D) endothermic with ΔH = +181 kJ

(5)(4 pts) A certain reaction has negative values of both ΔH and ΔS . Therefore, the reaction

(A) must be spontaneous at all temperatures.

- (B) cannot be spontaneous at any temperature.
- (C) will be spontaneous only at low temperatures.
- (D) will have a positive free energy at any temperature.

(6)(4 pts) What is the sign of ΔH and ΔS ?

For this process at 25 °C:

 $H_2O(g) ---> H_2O(l)$

- (A) ΔH is negative and ΔS is negative.
- (B) ΔH is negative and ΔS is positive.

- (C) ΔH is positive and ΔS is positive.
- (D) ΔH is positive and ΔS is negative.
- (7)(4 pts) How much heat must be absorbed to heat a 45 kg car engine (made of iron) from 25 °C to operating temperature (95 °C)? The specific heat of iron is 0.45 J/g•°C.

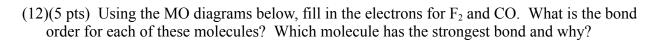
(8)(4 pts) Butane (C₄H₁₀) (1.0 g) and 5000 psi of O₂ was placed in a bomb calorimeter. If the initial temperature of the calorimeter was 25 °C and the final temperature was 31 °C, what is Δ H for the reaction below. The heat capacity for the calorimeter is 6,800 J/°C.

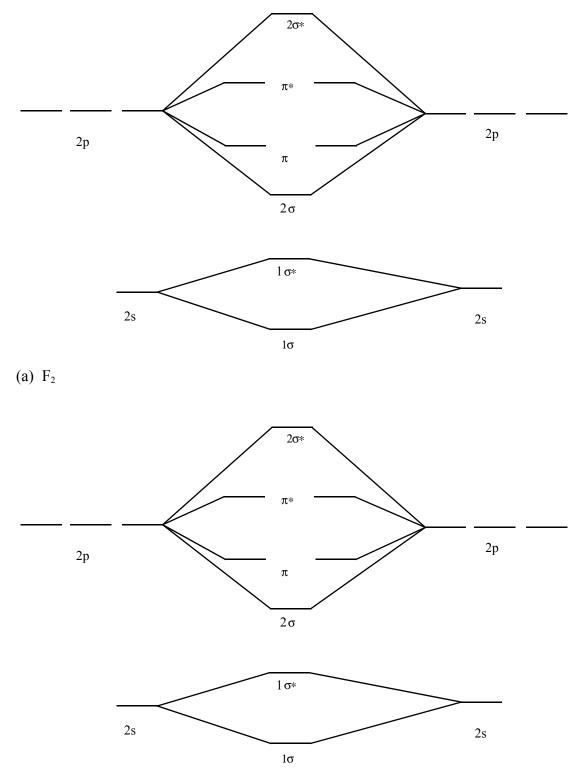
 $C_4 H_{10(l)} + 6.5 O_2 ----> 4 CO_{2(g)} + 5 H_2 O_{(l)} \qquad \Delta H = ?$

(9) The Haber process is used commercially to manufacture ammonia.

$$3 H_{2(g)} + N_{2(g)} ----> 2NH_{3(g)}$$

Using the tables of thermodynamic data on the back of this exam, (a) is this process spontaneous or nonspontaneous at $25 \text{ }^{\circ}\text{C}$?


(b)At what temperature is this process in equilibrium?


(10)(4 pts) Calculate the ΔH for the following reaction using the information below.

 $KClO_3 + PCl_3 ---> 3POCl_3 + KCl \Delta H = ?$ Useful information

> KCl + 0.5O₂ ----> KClO₃ $\Delta H = 39.0 \text{ kJ}$ 0.75P₄ + 1.5O₂ + 4.5Cl₂ ----> 4POCl₃ $\Delta H = -1234$ 0.75P₄ + 4.5Cl₂ ---> 3PCl₃ $\Delta H = -861 \text{ kJ}$

(11)(4 pts) If a reaction has a positive ΔH and a positive ΔS , under what conditions is it spontaneous and why?

(b) CO

(c) What are the bond orders, which one has a stronger bond, and why?

Extra Credit:(5 pts) If 25.00 g of $NH_4Cl_{(s)}$ is added to 100.0 g of water at 45.0 °C, what is the final temperature of the solution. Assume that s = 3.98 J/g•°C for the solution.

 $NH_4Cl_{(s)} ----> NH_4^+_{(aq)} + Cl_{(aq)}^- \Delta H = 28.1 \text{ kJ}$