Chem 1054 Exam 3. Name

Show all work for credit

- (1)(2 points) Define the following:(a) Arrhenius acid
- (b) Arrhenius base
- (c) Brønstead-Lowry acid
- (d) Brønstead-Lowry base
- (2)(4 points) Complete the following neutralization reactions and balance them for complete neurtralization (all acidic protons neutralized, all basic units neutralized).
- (a) $HCIO_3 + Ca(OH)_2(aq) ---->$

- (b) $HF(aq) + NH_3 ---->$
- (3)(2 points) Name the following acids and bases
- (a) HNO₃
- (b) H₂SO₃
- (c) NH₃
- (c) HClO₂
- (4)(4 points) Write the net acid-base reactions for the following neutralizations
- (a) $H_3PO_4(aq) + NaOH(aq) ---->$

(b)	HF(aq)	+ Ca(OH) ₂ (aq)	>
-----	--------	----------------------------	---

(5)(4 points) Write the molecular, ionic and net ionic equations for the following reactions

(a)
$$AgNO_3(aq) + CrCl_3(aq) ---->$$

(b)
$$Ba(OH)_2(aq) + FeSO_4(aq) ---->$$

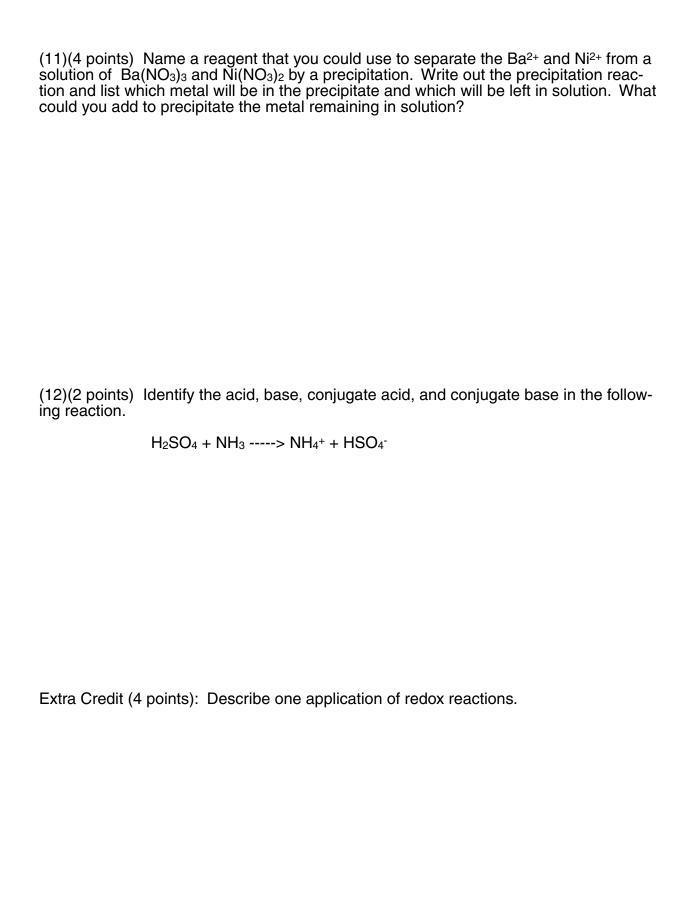
(6)(4 points) A 25.00 mL sample containing oxalate($C_2O_4^{2-}$) was titrated with 0.100 M NaMnO₄ according to the equation below. If it took 22.10 mL of the MnO₄⁻ solution to neutralize the oxalate, what was the concentration of oxalate in the solution)?

$$16 H^{+}(aq) + 2MnO_{4}^{-}(aq) + 5C_{2}O_{4}^{2-}(aq) ---> 10CO_{2} (aq) + 2Mn^{2+}(aq) + 8 H_{2}O(I)$$

(7)(2 points) Label the following as strong electrolytes, weak electrolytes, or nonelectrolytes

- (a) CH₃CH₂OH
- (b) Li_2SO_4
- (c) NH₃
- (d) MgCr₂O₇

(8)(4 points) For the following reaction, identify the oxidizing agent and the reducing agent. Also, which species is oxidized, and which is reduced?


$$CrO_4^{2-} + S_8 ----> SO_2 + CIO^-$$

(9)(8 points) Balance the following half-reactions in acid (a) $Cu^+(aq)$ -----> $Cu^{2+}(aq)$

(b) $SO_4^{2-}(aq) ----> SO_3^{2-}(aq)$

(10)(4 points) Balance the following oxidation-reduction reaction in acid

$$Cu^+(aq) \, + \, SO_4{}^{2\text{-}}(aq) ----> \ Cu^{2+}(aq) \, + \, SO_3{}^2(aq)$$

