

Useful information: $\ln \frac{[A]_t}{[A]_0} = -kt, \frac{1}{[A]_t} = kt + \frac{1}{[A]_0}, k = Ae^{-\frac{E_a}{RT}}, P_{solution} = P_A^0 \chi_A + P_B^0 \chi_B$

 $\Pi = MRT \; , \quad R = 8.314 \frac{J}{mol \cdot K}, 0.0821 \frac{l \cdot atm}{mol \cdot K} \; , \; \Delta T_b = K_b c_m \; , \; \Delta T_f = -K_f c_m \; , \; \text{solubility=k•P,}$

 $\ln P_{vap} = \frac{-\Delta H_{vap}}{RT} + C \cdot \ln \frac{P_2}{P_1} = \frac{\Delta H_{vap}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right) \quad \text{m=moles/kg}$

You must show work for credit.

- (1) (4 points) What types of solvents (if any) should dissolve the following compounds?
- (a) Na2SO4 Palar, All solvents
- (b) CH3OH polar solvents
- (c) PCl3 pular salvents
- (d) W nono

(2)(4 points) What types of compounds exhibit ionic bonding?

Compands between a netal (lowEN) and a nannetal (high EN)

(3)(2 points) Sketch a face centered cubic unit cell. How many atoms are contained inside the unit cell?

(4)(4 pts) If a compound has a normal boiling point of 85 °C, and ΔH_{vap} of 35.2 kJ/mol, what is its vapor pressure at 25 °C?

$$T=85^{2}C(358k) P=1 atm T=25^{2}(298k) P=1$$

$$ln \frac{P}{1 + lm} = \frac{35 2 av lm}{5.3 lm lm} \left(\frac{1}{358k} - \frac{1}{218k}\right) P=0.0524 lm$$

$$ln \frac{P}{1 + lm} = -2.381$$

$$P=0.0524 lm lm$$

 $\frac{f_2}{f_3} = 0.0924$. (5)(4 pts) A solid as a simple cubic crystal structure with an edge length of 314 pm. If the density of the solid is 3.16 g/cm³, what is the element?

(6) (6 pts) Using the phase diagram shown, answer the following questions

(a) What is the triple point?

- (b) Is the solid or the liquid more dense?
- (c) If the temperature is raised from 15 °C to 350 °C at a pressure of 30 atm, what phase changes, if any, would occur?

(7)(4 points) At a certain town in Colmuch NaCl (in g) needs to be added to	O I (III I of water to make it beil at 1	00.900
PSIIN = PON KHOW PSIIN	- assetm = ladetin X150	888 poles pertiles = 6.67mm
Sola = Kook Kook Sola Sola	$\frac{\chi_{4,0} = 0.58}{4 \text{ total me}} = \frac{\text{notes}}{55.5 \text{ me}}$	150 = 0.88 Mbs pt. 16=8.33.m modo N. 4:4. 17ml obsparting 0.88 417x58.449.
(8)(4 pts) If it requires 0.442 atm of pt the concentration of dissolved particle	ressure to purify water from a freshves in the stream?	vater stream, what is 2436 g NeU
11-11/61		
0.44 Latin = M (0.0821 - ako	2)(3\alpha\k)	
0.017/M = M		

(9)(2 points) What intermolecular forces are present in the following molecules?

(a) CH3OH dispersion forces, diple-diple forces, hydron bondy

(b) PCl3 dispersion forces, diplo-dipolo forces

(11)(4 points) Write out the condensed, ionic, and net ionic equations for the following reactions.

- (12)(4 points) Label the following as electrolytes or nonelectrolytes.
- (a) Al purelect-dyte
- (b) Na3PO4 electrolyte
- (c) NH3 non cleatedyte
- (d) PCIs non o lected of